Cross-lingual Models of Word Embeddings: An Empirical Comparison
نویسندگان
چکیده
Despite interest in using cross-lingual knowledge to learn word embeddings for various tasks, a systematic comparison of the possible approaches is lacking in the literature. We perform an extensive evaluation of four popular approaches of inducing cross-lingual embeddings, each requiring a different form of supervision, on four typologically different language pairs. Our evaluation setup spans four different tasks, including intrinsic evaluation on mono-lingual and cross-lingual similarity, and extrinsic evaluation on downstream semantic and syntactic applications. We show that models which require expensive cross-lingual knowledge almost always perform better, but cheaply supervised models often prove competitive on certain tasks.
منابع مشابه
Learning Cross-lingual Word Embeddings via Matrix Co-factorization
A joint-space model for cross-lingual distributed representations generalizes language-invariant semantic features. In this paper, we present a matrix cofactorization framework for learning cross-lingual word embeddings. We explicitly define monolingual training objectives in the form of matrix decomposition, and induce cross-lingual constraints for simultaneously factorizing monolingual matric...
متن کاملA Comparison of Word Embeddings for English and Cross-Lingual Chinese Word Sense Disambiguation
Word embeddings are now ubiquitous forms of word representation in natural language processing. There have been applications of word embeddings for monolingual word sense disambiguation (WSD) in English, but few comparisons have been done. This paper attempts to bridge that gap by examining popular embeddings for the task of monolingual English WSD. Our simplified method leads to comparable sta...
متن کاملCross-Lingual Word Representations via Spectral Graph Embeddings
Cross-lingual word embeddings are used for cross-lingual information retrieval or domain adaptations. In this paper, we extend Eigenwords, spectral monolingual word embeddings based on canonical correlation analysis (CCA), to crosslingual settings with sentence-alignment. For incorporating cross-lingual information, CCA is replaced with its generalization based on the spectral graph embeddings....
متن کاملDetecting Cross-Lingual Plagiarism Using Simulated Word Embeddings
Cross-lingual plagiarism (CLP) occurs when texts written in one language are translated into a different language and used without acknowledging the original sources. One of the most common methods for detecting CLP requires online machine translators (such as Google or Microsoft translate) which are not always available, and given that plagiarism detection typically involves large document com...
متن کاملA Variational Autoencoding Approach for Inducing Cross-lingual Word Embeddings
Cross-language learning allows one to use training data from one language to build models for another language. Many traditional approaches require word-level alignment sentences from parallel corpora, in this paper we define a general bilingual training objective function requiring sentence level parallel corpus only. We propose a variational autoencoding approach for training bilingual word e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.00425 شماره
صفحات -
تاریخ انتشار 2016